10 resultados para Marine sponges

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new technique for the precise and accurate determination of Ge stable isotope compositions has been developed and applied to silicate rocks and biogenic opal. The analyses were performed using a continuous flow hydride generation system coupled to a MC-ICP-MS. Samples have been purified through anion- and cation-exchange resins to separate Ge from matrix elements and eliminate potential isobaric interferences. Variations of 74Ge/70Ge ratios are expressed as d74Ge values relative to our internal standard and the long-term external reproducibility of the data is better than 0.2? for sample size as low as 15 ng of Ge. Data are presented for igneous and sedimentary rocks, and the overall variation is 2.4? in d74Ge, representing 12 times the uncertainty of the measurements and demonstrating that the terrestrial isotopic composition of Ge is not unique. Co-variations of 74Ge/70Ge, 73Ge/70Ge and 72Ge/70Ge ratios follow a mass-dependent behaviour and imply natural isotopic fractionation of Ge by physicochemical processes. The range of d74Ge in igneous rocks is only 0.25? without systematic differences among continental crust, oceanic crust or mantle material. On this basis, a Bulk Silicate Earth reservoir with a d74Ge of 1.3+/-0.2? can be defined. In contrast, modern biogenic opal such as marine sponges and authigenic glauconite displayed higher d74Ge values between 2.0? and 3.0?. This suggests that biogenic opal may be significantly enriched in light isotopes with respect to seawater and places a lower bound on the d74Ge of the seawater to +3.0?.This suggests that seawater is isotopically heavy relative to Bulk Silicate Earth and that biogenic opal may be significantly fractionated with respect to seawater. Deep-sea sediments are within the range of the Bulk Silicate Earth while Mesozoic deep-sea cherts (opal and quartz) have d74Ge values ranging from 0.7? to 2.0?. The variable values of the cherts cannot be explained by binary mixing between a biogenic component and a detrital component and are suggestive of enrichment in the light isotope of diagenetic quartz. Further work is now required to determine Ge isotope fractionation by siliceous organisms and to investigate the effect of diagenetic processes during chert lithification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The silicon isotope composition (d30Si) of biogenic opal provides a view of the silica cycle at times in the past. Reconstructions require the knowledge of silicon isotope fractionation during opal biomineralization. The d30Si of specimens of hexactinellid sponges and demosponges growing in the modern ocean ranged from -1.2 per mil to -3.7 per mil (n = 6), corresponding to the production of opal that has a d30Si value 3.8 per mil +/- 0.8 per mil more negative than seawater silicic acid and a fractionation factor (a) of 0.9964. This is three times the fractionation observed during opal formation by marine diatoms and terrestrial plants and is the largest fractionation of silicon isotopes observed for any natural process on Earth. The d30Si values of sponge spicules across the Eocene-Oligocene boundary at Ocean Drilling Program Site 689 on Maud Rise range from -1.1 per mil to -3.0 per mil, overlapping the range observed for sponges growing in modern seawater.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent episodes of mass mortalities in the Mediterranean Sea have been reported for the closely related marine sponges Ircinia fasciculata and I. variabilis, which live in sympatry. In this context, the assessment of the genetic diversity, bottlenecks and connectivity of these sponges has become urgent in order to evaluate the potential effects of mass mortalities on their latitudinal range. Our study aims to establish 1.) the genetic structure, connectivity, and signs of bottlenecks across the populations of I. fasciculata, and 2.) the hybridization levels between I. fasciculata and I. variabilis. To accomplish the first objective, 194 individuals of I. fasciculata from 12 locations across the Mediterranean were genotyped at 14 microsatellite loci. For the second objective, mitochondrial cytochrome c oxidase subunit I sequences of 16 individuals from both species were analyzed along with genotypes at 12 microsatellite loci of 40 individuals coexisting in 3 Mediterranean populations. We detected strong genetic structure along the Mediterranean for I. fasciculata, with high levels of inbreeding in all locations and bottleneck signs in most locations. Oceanographic barriers like the Almeria-Oran front, North-Balearic front, and the Ligurian-Thyrrenian barrier seem to be impeding gene flow for I. fasciculata, adding population divergence to the pattern of isolation by distance derived from the low dispersal abilities of sponge larvae. Hybridization between both species occurred in some populations, which might be increasing genetic diversity and somewhat palliating the genetic loss caused by population decimation in I. fasciculata

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The zinc concentration of siliceous sponge spicules was determined from spicules recovered from four sediment cores spanning the last 160 kyr, from the Campbell Plateau region southeast of New Zealand. Zinc/Si results showed little difference between Holocene and glacial aged spicules. An increase in Zn/Si was observed for core Y14, where Zn/Si peaked at about 0.6 ?mol/mol during marine isotope stages 5a-5b. To better understand the role carbon export has on sponge Zn/Si, we explored the strong relationship observed between surficial sediment particulate organic carbon (POC) and the Zn/Si of sponge silica and related this to sediment trap POC flux estimates. Conversion of the Zn/Si records to benthic POC fluxes suggests that there has been little change in the amount of POC reaching Campbell Plateau sediments over the past 30 kyr. These results suggest that surface productivity over the Campbell Plateau has remained relatively low over the past 160 kyr and suggests that glacial productivity was not significantly higher than the present day. Finally, this work reveals that living marine sponges appear to act as the biological equivalents of moored sediment traps, recording the flux of POC to the seafloor by archiving zinc associated with sinking POC in the growing silica skeleton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2014, UniDive (The University of Queensland Underwater Club) conducted an ecological assessment of the Point Lookout Dive sites for comparison with similar surveys conducted in 2001. Involvement in the project was voluntary. Members of UniDive who were marine experts conducted training for other club members who had no, or limited, experience in identifying marine organisms and mapping habitats. Since the 2001 detailed baseline study, no similar seasonal survey has been conducted. The 2014 data is particularly important given that numerous changes have taken place in relation to the management of, and potential impacts on, these reef sites. In 2009, Moreton Bay Marine Park was re-zoned, and Flat Rock was converted to a marine national park zone (Green zone) with no fishing or anchoring. In 2012, four permanent moorings were installed at Flat Rock. Additionally, the entire area was exposed to the potential effects of the 2011 and 2013 Queensland floods, including flood plumes which carried large quantities of sediment into Moreton Bay and surrounding waters. The population of South East Queensland has increased from 2.49 million in 2001 to 3.18 million in 2011 (BITRE, 2013). This rapidly expanding coastal population has increased the frequency and intensity of both commercial and recreational activities around Point Lookout dive sites (EPA 2008). Methodology used for the PLEA project was based on the 2001 survey protocols, Reef Check Australia protocols and Coral Watch methods. This hybrid methodology was used to monitor substrate and benthos, invertebrates, fish, and reef health impacts. Additional analyses were conducted with georeferenced photo transects. The PLEA marine surveys were conducted over six weekends in 2014 totaling 535 dives and 376 hours underwater. Two training weekends (February and March) were attended by 44 divers, whilst biological surveys were conducted on seasonal weekends (February, May, July and October). Three reefs were surveyed, with two semi-permanent transects at Flat Rock, two at Shag Rock, and one at Manta Ray Bommie. Each transect was sampled once every survey weekend, with the transect tapes deployed at a depth of 10 m below chart datum. Fish populations were assessed using a visual census along 3 x 20 m transects. Each transect was 5 m wide (2.5 m either side of the transect tape), 5 m high and 20 m in length. Fish families and species were chosen that are commonly targeted by recreational or commercial fishers, or targeted by aquarium collectors, and that were easily identified by their body shape. Rare or otherwise unusual species were also recorded. Target invertebrate populations were assessed using visual census along 3 x 20 m transects. Each transect was 5 m wide (2.5 m either side of the transect tape) and 20 m in length. The diver surveying invertebrates conducted a 'U-shaped' search pattern, covering 2.5 m on either side of the transect tape. Target impacts were assessed using a visual census along the 3 x 20 m transects. Each transect was 5 m wide (2.5 m either side of the transect tape) and 20 m in length. The transect was surveyed via a 'U-shaped' search pattern, covering 2.5 m on either side of the transect tape. Substrate surveys were conducted using the point sampling method, enabling percentage cover of substrate types and benthic organisms to be calculated. The substrate or benthos under the transect line was identified at 0.5m intervals, with a 5m gap between each of the three 20m segments. Categories recorded included various growth forms of hard and soft coral, key species/growth forms of algae, other living organisms (i.e. sponges), recently killed coral, and, non-living substrate types (i.e. bare rock, sand, rubble, silt/clay).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metabolomic analysis has shown the chemical richness of the sponge-associated actinomycetes Streptomyces sp. SBT349, Nonomureae sp. SBT364, and Nocardiopsis sp. SBT366. The genomes of these actinomycetes were sequenced and the genomic potential for secondary metabolism was evaluated. Their draft genomes have sizes of 8.0, 10, and 5.8Mb having 687, 367, and 179 contigs with a GC content of 71.6, 70.7, and 72.7%, respectively. Moreover, antiSMASH 3.0 predicted 108, 149, and 75 secondary metabolite gene clusters, respectively which highlight the metabolic capacity of the three actinomycete species to produce diverse classes of natural products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the geosphere, germanium (Ge) has a chemical behavior close to that of silicon (Si), and Ge commonly substitutes for Si (in small proportions) in silicates. Studying the evolution of the respective proportions of Ge and Si through time allows us to better constrain the global Si cycle. The marine inventory of Ge present as dissolved germanic acid is facing two main sinks known through the study of present sediments: 1) incorporation into diatom frustules and transfer to sediments by these "shuttles", 2) capture of Ge released to pore water through frustule dissolution by authigenic mineral phases forming within reducing sediments. Our goals are to determine whether such a bio-induced transfer of Ge is also achieved by radiolarian and whether Ge could be trapped directly from seawater into authigenic phases with no intervention of opal-secreting organisms (shuttles). To this end, we studied two Paleozoic radiolarite formations and geological formations dated of Devonian, Jurassic and Cretaceous, deposited under more or less drastic redox conditions. Our results show that the Ge/Si values observed for these radiolarites are close to (slightly above) those measured from modern diatoms and sponges. In addition, our results confirm what is observed with some present-day reducing sediments: the ancient sediments that underwent reducing depositional conditions are authigenically enriched in Ge. Furthermore, it is probable that at least a part of the authigenic Ge came directly from seawater. The recurrence and extent (through time and space) of anoxic conditions affecting sea bottoms have been quite important through the geological times; consequently, the capture of Ge by reducing sediments must have impacted Ge distribution and in turn, the evolution of the seawater Ge/Si ratio.